
Stateful Processes in Elixir
Julian Doherty
@madlep

https://twitter.com/madlep

defmodule MyThing do
 use GenServer
 # ...

 def do_stuff(some_data) do
 # ...
 end
end

{:ok, thing} = MyThing.start_link()
MyThing.do_stuff(thing, "something something")

!

> > "Hey hackerreddit, I need to do a thing in Elixir?"

> "lol Just use GenServer"

!

I can't blindly follow a recipe book.
I need to "get" how it works under the hood

The one goal for today:
"how stateful processes work" -> your head

Enough for you to reason about Elixir code you see in
the wild

Erlang is optimised for: fault tolerance

Erlang is optimised for: fault tolerance

...Leads to isolating data

...Leads to isolating processes

...Leads to immutability

...Leads to functional programming

Leads to NOT mutating state like you'd do in OO code.

What is "state"?
Your data
Stuff that changes
What you need to manipulate to do useful work

What is "stateful"?
Keeping data in memory somewhere.
If you've got a reference to it, you can "do stuff".

If you're doing OO, you're doing "stateful" (probably)

What is "stateless"?
Not keeping data in memory
Just passing it from function to function
Transforming it along the way

If you're doing FP, you're doing "stateless" (probably)

So if we can't have state, and we can't mutate state?...

Functions!

"Do some work, then call yourself with the changed
state to do more work, repeat until done (or forever)"

Functional shopping cart

defmodule ShoppingCart do

 def init() do

 []

 end

 def add_item(cart, item) do

 [item | cart]

 end

end

cart = ShoppingCart.init

cart2 = ShoppingCart.add_item(cart, "milk")

cart3 = ShoppingCart.add_item(cart2, "bread")

IO.inspect cart3

["bread", "milk"]

Functional shopping cart

cool... but:
- no way to share state between processes
- stuck in single process land
- not fault tolerant. If it crashes, the process it's in
crashes

Need a way to do shared state...
While not having shared state
(safely)

So if we can't have shared state?...

Tail Recursive Functions!
And...
Processes!

Tail Recursive Functions

defmodule ShoppingCart do

 # ...

 def count_items(cart, count \\ 0)

 defp count_items([], count), do: count

 defp count_items([_item|cart], count), do: count_items(cart, count + 1)

end

...

IO.inspect ShoppingCart.count_items(cart3)

2

Processes

defmodule ShoppingCart do

 def start(), do: spawn(fn -> loop([]) end)

 def loop(cart) do

 receive do

 {:add_item, item} ->

 [item | cart] |> loop()

 {:count_items, from} ->

 send(from, {:count_response, count_items(cart, 0)})

 loop(cart)

 end

 end

 # ...

end

cart = ShoppingCart.start()

send(cart, {:add_item, "milk"})

send(cart, {:add_item, "bread"})

send(cart, {:count_items, self()})

receive do

 {:count_response, count} -> IO.inspect(count)

end

Cool... but a lot of boilerplate
Let's extract some abstractions around process
plumbing

Generic server for stateful processes

defmodule MyServer do
 def start(mod), do: spawn(fn -> apply(mod, :init, []) |> loop(mod) end)

 def call(server, args) do
 send(server, {:call, args, self()})
 receive do
 {:call_response, result} -> result
 end
 end

 def cast(server, args) do
 send(server, {:cast, args})
 end

 defp loop(state, mod) do
 receive do
 {:cast, args} ->
 apply(mod, :handle_cast, [args, state]) |> loop(mod)
 {:call, args, from} ->
 result = apply(mod, :handle_call, [args, state])
 send(from, {:call_response, result})
 loop(state, mod)
 end
 end
end

And server implementation for our cart

defmodule ShoppingCart do

 def init() do

 []

 end

 def handle_cast({:add_item, item}, cart), do: [item | cart]

 def handle_call(:count_items, cart), do: count_items(cart, 0)

 # ...

end

cart = MyServer.start(ShoppingCart)

MyServer.cast(cart, {:add_item, "milk"})

MyServer.cast(cart, {:add_item, "bread"})

IO.inspect MyServer.call(cart, :count_items)

This is GenServer!
That's 90% of what use GenServer does for you

Let's use GenServer then

defmodule ShoppingCart do

 use GenServer

 def init(_args) do

 {:ok, []}

 end

 def handle_cast({:add_item, item}, cart) do

 {:noreply, add_item(cart, item)}

 end

 def handle_call(:count_items, _from, cart) do

 {:reply, count_items(cart), cart}

 end

 # ...

end

{:ok, cart} = GenServer.start(ShoppingCart, [])

GenServer.cast(cart, {:add_item, "milk"})

GenServer.cast(cart, {:add_item, "bread"})

IO.inspect GenServer.call(cart, :count_items)

Convention is to provide nicer client API

defmodule ShoppingCart do

 use GenServer

 def start(_args), do: GenServer.start(ShoppingCart, [])

 def add_item(cart, item), do: GenServer.cast(cart, {:add_item, item})

 def count_items(cart), do: GenServer.call(cart, :count_items)

 # ...

end

{:ok, cart} = ShoppingCart.start([])

ShoppingCart.add_item(cart, "milk")

ShoppingCart.add_item(cart, "bread")

IO.inspect ShoppingCart.count_items(cart)

We've lost some things though

— GenServer plumbing is mixed up with application
logic

— harder to test in isolation

— harder to understand and reason about

API/Server/Impl pattern

split up responsibilities
- API (or "base") module is called from outside, nice
interface. Does GenServer calls/casts
- Server module implements GenServer behaviour,
delegates to...
- Impl module does the actual business logic and
manages state

Splitting APIs, Servers, and Implementations in Elixir
https://pragdave.me/blog/2017/07/13/decoupling-
interface-and-implementation-in-elixir.html

https://pragdave.me/blog/2017/07/13/decoupling-interface-and-implementation-in-elixir.html
https://pragdave.me/blog/2017/07/13/decoupling-interface-and-implementation-in-elixir.html

defmodule ShoppingCart do
 def start(_args) do
 GenServer.start(ShoppingCart.Server, [])
 end

 def add_item(cart, item) do
 GenServer.cast(cart, {:add_item, item})
 end

 def count_items(cart) do
 GenServer.call(cart, :count_items)
 end
end

defmodule ShoppingCart.Server do
 use GenServer

 def init(_args), do: {:ok, ShoppingCart.Impl.create()}

 def handle_cast({:add_item, item}, cart) do
 {:noreply, ShoppingCart.Impl.add_item(cart, item)}
 end

 def handle_call(:count_items, _from, cart) do
 {:reply, ShoppingCart.Impl.count_items(cart), cart}
 end
end

defmodule ShoppingCart.Impl do

 def create(), do: []

 def add_item(cart, item), do: [item | cart]

 def count_items(cart), do: count_items(cart, 0)

 defp count_items([], count) do

 count

 end

 defp count_items([_item|cart], count) do

 count_items(cart, count + 1)

 end

end

{:ok, cart} = ShoppingCart.start([])

ShoppingCart.add_item(cart, "milk")

ShoppingCart.add_item(cart, "bread")

IO.inspect ShoppingCart.count_items(cart)

What did all that buy us?

What did all that buy us?
— The shopping cart is now isolated and fault tolerant.

— Our app can now scale across multi core

— We can supervise or app, and set different restart
policies if they fail

This is everywhere in Elixir

—Agent

— Task

— GenStage

— Flow

— LiveView

— Scenic

— Supervisors

—More...

If you remember one thing:

When you see

use GenServer

Mentally picture code running as a separate, isolated
process.

There is a function, that calls itself in a loop...
sitting there waiting to receive your messages...
and send messages back...
asynchronously...

Thank you!
Questions?

