Process Name
Registration

Julian Doherty
@madlep

“Process name
registration”

* sounds super boring

e TL;DR - DNS for BEAM (Elixir) Processes

let It crash

my_pid = Foo.start_link
Foo.bar(my_pid, “a message”)
Foo.bar(my_pid, “another message”)

OH NO! CRASH!

Foo.bar(my_pid, “hello, world!”)
nothing happens...
SAD!

SO we register

my_pid = Foo.start_link
Process.register(my_pid, :some_name)
Foo.bar(:some_name, “a message”)
Foo.bar(:some_name, “another message”)

OH NO! CRASH!
manually handle it...

my_pid2 = Foo.start_link
Process.register(my_pid2, :some_name)

send(:some_name, “hello, world!”)
huge

This Is what supervisors do

my_sup = Supervisor.start_link(
Supervisor.child_spec(Foo, nhame: :some_name)

)

Foo.bar(:some_name, “a message”)
Foo.bar(:some_name, “another message”)

OH NO! CRASH!
supervisor does the magic

Foo.bar(:some_name, “hello, world!”)
bigly

Local name registration

Default is to use the built in BEAM name registration
features

Local VM
easy to use

robust

Local name registration

“global” - as in “global variables”
(not as in distributed systems)

as in “global variables are bad”
makes tests harder
code more brittle

can’t namespace

Elixir Registry

https://hexdocs.pm/elixir/Registry.html

part of Elixir stdlib

allows creation of multiple namespaces, each
iIndependent

we use this for running multiple parallel event sourcing
projectors, each with separate data looked up by id

https://hexdocs.pm/elixir/Registry.html

Elixir Registry

{:0k, _} = Registry.start_link(
keys: :unique, name: :some_registry

)

my_sup = Supervisor.start_link(

Supervisor.child_spec(Foo, name: :some_name)
#)

my_sup = Supervisor.start_link(
Supervisor.child_spec(Foo, name:
{:via, Regqistry, {:some_registry, :some_name)

)

Global

http://erlang.org/doc/man/global.html
part of Erlang stdlib

same semantics as local, but distributed
simple

not flexible enough for a lot of use cases
great for built in Erlang stuff

can be slow

Global

my_sup = Supervisor.start_link(
Supervisor.child_spec(Foo, name: {:global,;:some_name})

)

Foo.bar({:global,:some_name}, “a message”)
Foo.bar({:global,:some_name}, “another message”)

OH NO! CRASH!
supervisor does the magic

Foo.bar({:global,:some_name}, “hello, world!”)
bigly

gproc

e |ocal with more stuff
* very mature

e can do global, but gets weird

syn

* designed for lots of processes, lots of join/leave
 |OT devices is use case

e assumes relatively static cluster

Swadalim

lots of cool cloud stuff
designed for lots of processes, lots of join/leave
can automatically distribute/rebalance processes

may be overkill

