
Process Name
Registration

Julian Doherty 
@madlep

“Process name
registration”

• sounds super boring

• TL;DR - DNS for BEAM (Elixir) Processes

let it crash

my_pid = Foo.start_link
Foo.bar(my_pid, “a message”)
Foo.bar(my_pid, “another message”)

OH NO! CRASH!

Foo.bar(my_pid, “hello, world!”)
nothing happens…
SAD!

So we register
my_pid = Foo.start_link
Process.register(my_pid, :some_name)
Foo.bar(:some_name, “a message”)
Foo.bar(:some_name, “another message”)

OH NO! CRASH!
manually handle it…

my_pid2 = Foo.start_link
Process.register(my_pid2, :some_name)

send(:some_name, “hello, world!”)
huge

This is what supervisors do

my_sup = Supervisor.start_link(
 Supervisor.child_spec(Foo, name: :some_name)
)
Foo.bar(:some_name, “a message”)
Foo.bar(:some_name, “another message”)

OH NO! CRASH!
supervisor does the magic

Foo.bar(:some_name, “hello, world!”)
bigly

Local name registration

• Default is to use the built in BEAM name registration
features

• Local VM

• easy to use

• robust

Local name registration

• “global” - as in “global variables” 
(not as in distributed systems)

• as in “global variables are bad”

• makes tests harder

• code more brittle

• can’t namespace

Elixir Registry

• https://hexdocs.pm/elixir/Registry.html

• part of Elixir stdlib

• allows creation of multiple namespaces, each
independent

• we use this for running multiple parallel event sourcing
projectors, each with separate data looked up by id

https://hexdocs.pm/elixir/Registry.html

Elixir Registry
{:ok, _} = Registry.start_link(
 keys: :unique, name: :some_registry
)

my_sup = Supervisor.start_link(
Supervisor.child_spec(Foo, name: :some_name)
)

my_sup = Supervisor.start_link(
 Supervisor.child_spec(Foo, name:
 {:via, Registry, {:some_registry, :some_name)
)

Global
• http://erlang.org/doc/man/global.html

• part of Erlang stdlib

• same semantics as local, but distributed

• simple

• not flexible enough for a lot of use cases

• great for built in Erlang stuff

• can be slow

Global

my_sup = Supervisor.start_link(
 Supervisor.child_spec(Foo, name: {:global,:some_name})
)
Foo.bar({:global,:some_name}, “a message”)
Foo.bar({:global,:some_name}, “another message”)

OH NO! CRASH!
supervisor does the magic

Foo.bar({:global,:some_name}, “hello, world!”)
bigly

gproc

• local with more stuff

• very mature

• can do global, but gets weird

syn

• designed for lots of processes, lots of join/leave

• IOT devices is use case

• assumes relatively static cluster

swarm

• lots of cool cloud stuff

• designed for lots of processes, lots of join/leave

• can automatically distribute/rebalance processes

• may be overkill

