ETS,
DETS,
Mnesia,
and things

Julian Doherty
madlep.com
@madlep

madlep.com
https://twitter.com/madlep

Try not to. But you probably will though

Agents

Simple, easy, relatively inflexible

Possibly & depending on who you talk to

{:0k, agent} = Agent.start(fn() -> 0 end)

Agent.get(agent, fn(state) -> state end)

Agent.update(agent, fn(state) -> state + 1 end)

Agent.get(agent, fn(state) -> state end)

Agents

So0?... What's the big deal?

Agents

— Agent 1s a separate process
— Can read/write from multiple places

— Functions are executed in process that maintains
agent data

— Isolated, serialized, transactional

Agents

Can be limiting. You'll probably grow out of them

And end up using...

GenServer

defmodule IncrementServer do
use GenServer

def start_link(number \\ 0) do
GenServer.start_link(IncrementServer, number)
end

def handle_call(:get_number, _from, state) do
{:reply, state, state}
end
def handle_cast(:increment, state) do
{:noreply, state + 1}
end
end

{:0k, my_incr} = IncrementServer.start_link()

GenServer.call(my_incr, :get_number)

GenServer.cast(my_incr, :increment)

GenServer.call(my_incr, :get_number)

GenServer

— more complicated
— more flexible
— you'll probably end up here

Agents and GenServer

Both can be bottle necks

Pure Erlang/Elixir can't do fast mutable or shared data

Need some

Ets, Dets, Mnesia

Implemented in native code, built into the VM

Can do things Erlang/Elixir code isn't allowed to

Erlang
Term
Storage

(In memory data store)

people_tid = :ets.new(:people, []1)

cets.insert(people_tid, {
"madlep",
%{name: "Julian", twitter: "@madlep"}

})

cets.lookup(people_tid, "madlep")

— fast
— 1n memory

— atomic, serializable
— transient
— need to understand error handling

Dets

Disk
Erlang
Term
Storage

(Ets, but slower and saved to disk)

{:0k, people_tid} = :dets.open_file(
:people,
[file: 'my_people_file.dets']

)

:dets.insert(people_tid, {
"madlep”,
%{name: "Julian Doherty", twitter: "@madlep"}

})

:dets.lookup(people_tid, "madlep")

:dets.close(people_tid)

Dets

— almost the same as Ets

— durable, survives VM restarts
— slower, disk based vs memory based

— slower, like EVERYTHING is a disk operation
— no in memory caching

a0 o2

Dets 1s slow, but durable. Ets is fast, but not durable...

Why don't | just cache Dets with Ets?

Erlang is way ahead of you

VInesia

(HAHA get 1it! Mnesia... Amnesia... Programmer joke!...

VInesia

RDBMS built into Erlang stdlib
Built on top of Ets and Dets
Transactional, distributable, replicatable

Can be disk and/or memory based

:mnesia.create_schema([node()])

:mnesia.start()

:mnesia.create_table(Person, [attributes: [:1d, :name, :twitter]])

:mnesia.transaction(fn ->

:mnesia.write({Person, "madlep", "Julian", "@madlep"})
:mnesia.write({Person, "trump", "Donald", "@realDonaldTrump"})
end)

:mnesia.transaction(fn ->

:mnesia.read({Person, "madlep"})
end)

IVinesia

— closer to MySql/Postgresql (but not as good)
— full transactions

— indexes

— richer querying

— distributed

— replicated

— need to understand split brain

In summary

Ets
- You'll probably use this. A lot

Dets
- Usetul for occasionally accessed, persistent data

Mnesia

- More complex

- Usually MySQL or Postgresql is a better option
- Has it's uses

Thank you!
Questions?

madlep.com
https://twitter.com/madlep

