
ETS,
DETS,
Mnesia,
and things
Julian Doherty
madlep.com
@madlep

madlep.com
https://twitter.com/madlep

State
Try not to. But you probably will though

Agents
Simple, easy, relatively inflexible

Possibly
!

 depending on who you talk to

{:ok, agent} = Agent.start(fn() -> 0 end)
{:ok, #PID<0.91.0>}

Agent.get(agent, fn(state) -> state end)
0

Agent.update(agent, fn(state) -> state + 1 end)
:ok

Agent.get(agent, fn(state) -> state end)
1

Agents
So?... What's the big deal?

Agents
— Agent is a separate process

— Can read/write from multiple places

— Functions are executed in process that maintains
agent data

— Isolated, serialized, transactional

Agents
Can be limiting. You'll probably grow out of them

And end up using...

GenServer

defmodule IncrementServer do
 use GenServer

 def start_link(number \\ 0) do
 GenServer.start_link(IncrementServer, number)
 end

 def handle_call(:get_number, _from, state) do
 {:reply, state, state}
 end

 def handle_cast(:increment, state) do
 {:noreply, state + 1}
 end
end

{:ok, my_incr} = IncrementServer.start_link()

GenServer.call(my_incr, :get_number)
0

GenServer.cast(my_incr, :increment)
:ok

GenServer.call(my_incr, :get_number)
1

GenServer
— more complicated

— more flexible

— you'll probably end up here

Agents and GenServer
Both can be bottle necks

Pure Erlang/Elixir can't do fast mutable or shared data

Need some

Ets, Dets, Mnesia
Implemented in native code, built into the VM

Can do things Erlang/Elixir code isn't allowed to

Ets
Erlang
Term
Storage

(In memory data store)

people_tid = :ets.new(:people, [])
135191

:ets.insert(people_tid, {
 "madlep",
 %{name: "Julian", twitter: "@madlep"}
})
true

:ets.lookup(people_tid, "madlep")
[{"madlep", %{name: "Julian", twitter: "@madlep"}}]

Ets
— fast

— in memory

— atomic, serializable

— transient

— need to understand error handling

Dets
Disk
Erlang
Term
Storage

(Ets, but slower and saved to disk)

{:ok, people_tid} = :dets.open_file(
 :people,
 [file: 'my_people_file.dets']
)

:dets.insert(people_tid, {
 "madlep",
 %{name: "Julian Doherty", twitter: "@madlep"}
})
:ok

:dets.lookup(people_tid, "madlep")
[{"madlep", %{name: "Julian Doherty", twitter: "@madlep"}}]

:dets.close(people_tid)
:ok

Dets
— almost the same as Ets

— durable, survives VM restarts

— slower, disk based vs memory based

— slower, like EVERYTHING is a disk operation

— no in memory caching

!
Dets is slow, but durable. Ets is fast, but not durable...

Why don't I just cache Dets with Ets?

Erlang is way ahead of you

Mnesia
(HAHA get it! Mnesia... Amnesia... Programmer joke!...
!

)

Mnesia
RDBMS built into Erlang stdlib

Built on top of Ets and Dets

Transactional, distributable, replicatable

Can be disk and/or memory based

:mnesia.create_schema([node()])
:ok

:mnesia.start()
:ok

:mnesia.create_table(Person, [attributes: [:id, :name, :twitter]])
{:atomic, :ok)

:mnesia.transaction(fn ->
 :mnesia.write({Person, "madlep", "Julian", "@madlep"})
 :mnesia.write({Person, "trump", "Donald", "@realDonaldTrump"})
end)
{:atomic, :ok}

:mnesia.transaction(fn ->
 :mnesia.read({Person, "madlep"})
end)
{:atomic, [{Person, "madlep", "Julian", "@madlep"}]}

Mnesia
— closer to MySql/Postgresql (but not as good)

— full transactions

— indexes

— richer querying

— distributed

— replicated

— need to understand split brain

In summary
Ets
- You'll probably use this. A lot

Dets
- Useful for occasionally accessed, persistent data

Mnesia
- More complex
- Usually MySQL or Postgresql is a better option
- Has it's uses

Thank you!
Questions?
Julian Doherty
madlep.com
@madlep

madlep.com
https://twitter.com/madlep

