
Erlang
my name is Julian Doherty, and I use Erlang because it's the 
only sane way I've found to do concurrent programming

madlep@rawblock.com
madlep@ubercharged.net
http://www.rawblock.com

http://www.ubercharged.net

mailto:madlep@rawblock.com
http://www.rawblock.com
http://www.ubercharged.net


• Designed for real world use

• Concurrent

• Distributed

• Fault tolerant

• CouchDB, Mochiweb, Rabbitmq, Ejabberd

Main Design Goal: 
Reliability



Concurrency

• Asynchronous message passing

• Can fake sync concurrency

• NO shared state (can cheat though)

• Each process has own “inbox”

• spawn(...) == Object.new



Light Weight Processes

• OS Process > OS Thread > Erlang Process

• Green (software) threads, non blocking IO

• Built in scheduler

• Can start 100,000s - 1,000,000s of 
processes

• Cheap to create / stop / switch

• E.g. http://ihatevans.com - 3000 req/sec

• 1,000,000 user comet app

http://ihatevans.com


meaningless micro benchmark: 
Yaws (Erlang web server) vs Apache



Distributed

• Built in

• Same syntax and semantics as local 
concurrency

• Slower though, so can’t just ignore

• All or nothing security (annoying)



Fault Tolerance

• NO THREADS (been burnt too many times)

• “Nine nines” (99.9999999%) uptime

• Linked processes

• Supervisors

• Let processes die, then restart

• OTP - framework/best practices for servers



Language Syntax

• Immutable, single assingment

• Pattern matching

• Strictly functional (no OO in there)

• Compiled, Dynamic typed

• Tail recursion, actor pattern used for state

• Sometimes clunky (Strings, Records)



The code! 
ihatevans.com

(talk to me about the Erlang/Ruby Rack handler I’m 
hacking on over a couple of beers if you’re interested)


