
Cool Functional Tricks

In Ruby
Julian Doherty

@madlep
juliandoherty.com

https://twitter.com/madlep
https://juliandoherty.com

We're hiring
careers.envato.com

https://envato.com/careers/

Who here has written code like this?
def calculate_damage(current_damage, new_damage)
 current_damage + new_damage
end

calculate_damage(5123, 23145)
28268

Or this?
movies = [
 {movie: "Apollo 13", year: 1994, damage_cost: 2600000000},
 {movie: "Cast Away", year: 2000, damage_cost: 60000000},
 {movie: "Sully", year: 2016, damage_cost: 101000000}
]

total_damage_cost = movies.map{|movie|
 movie[:damage_cost]
}.sum()
2761000000

Or this?
movies = [
 {movie: "Apollo 13", year: 1994, damage_cost: 2600000000},
 {movie: "Cast Away", year: 2000, damage_cost: 60000000},
 {movie: "Sully", year: 2016, damage_cost: 101000000}
]

total_damage_cost = movies.reduce(0){|total, movie|
 total + movie[:damage_cost]
}
2761000000

Or even this?
movies = [
 {movie: "Apollo 13", year: 1994, damage_cost: 2600000000},
 {movie: "Cast Away", year: 2000, damage_cost: 60000000},
 {movie: "Sully", year: 2016, damage_cost: 101000000}
]

total_damage_cost = movies.sum{|movie| movie[:damage_cost]}
2761000000

What do we call this kind of code?

We call it...
Tom Hanks

Trashing a whole bunch
of stuff

TDD
...

TDD
Tom Driven Destruction

Let's figure out how much.
But let's not make the

problem worse

How do we minimise the damage?

Three Things
→ Statelessness
→ Immutability

→ Functional Purity

Statelessness
Code that is in it's own little world.

All it has, is what is given to it.
There is nothing outside. There is

no state

Don't do this
!

class TomHanksDamage
 attr_accessor :da_vinci_code, :damage

 def calc_damage()
 MovieModel.find_tom_hanks_movies().each do |movie|
 @damage = @damage + movie.damage_cost
 @da_vinci_code = true if movie.da_vinci?
 end
 end

 def damage_cost()
 if @da_vinci_code
 1_000_000_000_000
 else
 @damage
 end
 end
end

Do this
!

damage_cost = MovieModel.find_tom_hanks_movies().then{|movies|
 if movies.find(&:da_vinci?)
 1_000_000_000_000
 else
 movies.sum(&:damage_cost)
 end
}

"An exploration of how ones soul’s sole actions of an
individual lives/souls impact one another in the

past, present and future..."

...

"An exploration of how ones soul’s sole actions of an
individual lives/souls impact one another in the

past, present and future..."

GOOD LUCK DEBUGGING THAT

Immutability
Only create data - Never change it.

Don't do this
!

class CloudAtlas::Soul
 def initialize()
 @lives = []
 end

 def explore_soul(life)
 @lives << life
 CloudAtlas.every_single_other_soul.each do |other|
 other.impact_past_present_and_future(self)
 end
 do_something_philosophical_with_all_that_mutable_state()
 end
end

tom = CloudAtlas::Soul.new
tom.explore_soul("Dr Henry Goose")
tom.explore_soul("Isaac Sachs")
this goes on for 172 minutes...

Do this
!

class CloudAtlas::Soul
 def initialize(lives=[])
 @lives = lives
 end

 def explore_soul(life, others)
 new_soul = CloudAtlas::Soul.new(@lives + [life])
 new_others = others.map{|other|
 other.immutably_transform_past_present_and_future(new_soul)
 }
 exploration = new_soul.do_something_philosophical(new_others)
 [new_soul, new_others, exploration]
 end
end

Do this
!

initial_state = [
 CloudAtlas::Soul.new,
 CloudAtlas.every_single_other_soul,
 []
]

["Dr Henry Goose", "Isaac Sachs"]
 .reduce(initial_state){|state, life|
 soul, others, explorations = state
 new_soul, new_others, exploration = soul.explore_soul(life, others)
 [new_soul, new_others, explorations + [exploration]]
 }
 # this still goes on for like 3 hours...

Functional Purity
Every time you call a function, it's the same

There are no side causes
There are no side effects

Functional Purity
All you have are arguments you get given

All you can do is compute something, and return it
If you call it again with the same arguments,

it must return the same result

Functional Purity
→ No IO

→ No random
→ No current time
→ No threads

→ No state in other objects
→ No Tom Hanks gifs

Don't do this
!

def gif_my_tom(tom)
 tom_gif = TomHanksMemeService.download_a_tom_gif!(tom)
 cache_image(tom_gif)
 tom.image = tom_gif
 tom.updated_at = Time.now
 tom.save_to_the_database!
end

Do this
!

def actually_thats_a_whole_separate_talk()
 # I've only got 30 minutes

!

 # short: Google "Functional Core, Imperative Shell"
 # longer: grab me for

☕

/

#

 later
 # much longer:
 # "Monads are just monoids in the category of endofunctors"
end

So?... What actually is functional programming?

→ Statelessness
→ Immutability

→ Functional Purity

What actually is functional programming? TL;DR?
Expressing your logic like maths operations
Stop thinking of a list of imperative instructions
Start thinking how you can transform your data

Don't think about how it needs to happen
Think about what needs to happen

But why?
Seems like a lot of messing around...

Functions fit in our brains

Less to think about
Less to go wrong

The CPU couldn't care less
even if all your code was reams of global variables

and a mess of spaghetti goto statements

Our brains need simple structures
→ We can create it

→ We can reason about it
→ We can test it

→ We can maintain it
→ We can change it

But Ruby is an OO
language though, right?

Everything is a function if
you squint hard enough

Plain Old (Immutable) Ruby Objects
class TomHanks
 def initialize(movies = [], damage_cost = 0)
 @movies = movies
 @damage_cost = damage_cost
 end

 def add_movie_damage(movie, damage)
 TomHanks.new(@movies + [movie], @damage_cost + damage)
 end
end

tom = TomHanks.new()
destructive_tom = tom.add_movie_damage("Forest Gump", 50_000_000)

Plain Old Ruby Objects
I thought you said state was bad, and we need to do

statelessness?

Plain Old Ruby Objects
I thought you said state was bad, and we need to do

statelessness?
Everything is a function if you squint hard enough

Everything is a function if you squint hard enough

self is just an implicit variable passed to a function.
If you treat it like that, it's ok.

What would Python do?
class TomHanks:
 def __init__(self, movies = [], damage_cost = 0):
 self.movies = movies
 self.damage_cost = damage_cost

 def add_movie_damage(self, movie, damage):
 return TomHanks(self.movies + [movie], self.damage_cost + damage)

tom = TomHanks()

destructive_tom = tom.add_movie_damage("Forest Gump", 50000000)

also_destructive_tom = TomHanks.add_movie_damage(tom, "Forest Gump", 50000000)

What would Elixir do?
defmodule TomHanks do
 defstruct [movies: [], damage_cost: 0]

 def add_movie_damage(tom, movie, damage) do
 %TomHanks{tom |
 movies: [tom.movies | movie],
 damage_cost: tom.damage_cost + damage
 }
 end
end

tom = %TomHanks{}
destructive_tom = TomHanks.add_movie_damage(tom, "Forest Gump", 50_000_000)

We get something else for free with Ruby methods

Blocks

Blocks
Let you pass an anonymous function to any Ruby method

class Apollo13
 # ...
 def stir_oxygen_tanks?
 @oxygen_tanks.any?{|tank| yield tank}
 end
end

Blocks let you choose different implementations
class Apollo13
 # ...
 def stir_oxygen_tanks?
 @oxygen_tanks.any?{|tank| yield tank}
 end
end

apollo13.stir_oxygen_tanks?{|tank|
 !tank.stirred_today?
}

apollo13.stir_oxygen_tanks?{|tank|
 tank.pressure_sensor_malfunctioning?
}

Two ways to call blocks
{} vs do ... end
apollo13.stir_oxygen_tanks?{|tank| tank.stirred_today? }

apollo13.stir_oxygen_tanks? do |tank|
 tank.stirred_today?
end

Controversial block syntax opinion
Use {} for when you care about the returned value

Use do ... end for side effects
Ignore line count

Controversial block syntax opinion
should_stir = apollo13.stir_oxygen_tanks?{|tank|
 tank.pressure_sensor_malfunctioning?
}

apollo13.stir_oxygen_tanks do |tank|
 if tank.number == 2
 tank.explode!
 tom.say "Houston, we have a problem"
 end
end

Communicate intent with {} or do ... end
It's not about dogmatic whitespace rules

If you use Rubocop
Set block delimiters to semantic
#.rubocop.yml
Style/BlockDelimters:
 EnforcedStyle: semantic

Object#then is super cool
remove state from your context

put it in a block
damage_cost = MovieModel.find_tom_hanks_movies().then{|movies|
 # I can see `movies` here
 do_stuff(movies)
 do_other_stuff(movies)
}
I can not see `movies` here
statelessness is preserved

then is super cool
The implementation is trivial and elegant though

class Object
 def yield_self
 yield self
 end

 alias then yield_self
end

The thing is though...
Blocks don't really exist

Not as objects at least.
Syntax sugar for passing a bunch of code

What if we want to grab hold of a block?
class Apollo13
 # ...
 # prefix last argument with &
 def stir_oxygen_tanks?(&should_stir)
 # then you can use it like any other object
 @oxygen_tanks.any?{|tank| should_stir.(tank)}
 end
end

Now we have it, we can pass it around
class Apollo13
 # ...
 def stir_oxygen_tanks?(&should_stir)
 # prefix it with & again to pass as a block
 @oxygen_tanks.any?(&should_stir)
 end
end

What is this captured block thing?
def do_block(&block)
 block.inspect
end

do_block { "I'm a

!

" }
"#<Proc:0x00007f8e35173c00@(irb):35>"

A block you grab with & is a Proc object

procs =~ lambdas (mostly...)
We'll use them interchangably in this talk

There are some subtle differences
We'll ignore that for today

Procs (and lambdas) are first class functions
"first class" just means something you can assign to

a value, and pass around like anything else

procs are first class anonymous functions
(aka lambdas)

my_proc = proc{|x,y| x + y}
my_proc.(1,2)
3

my_lambda = lambda{|x,y| x + y}
my_lambda.(1,2)
3

my_lambda = ->(x,y){x + y}
my_lambda.(1,2)
3

Lambdas can be passed as blocks with the & operator

missions = [apollo11, apollo12, apollo13, ...]

mission_result = ->(mission){
 if mission.tom_hanks_is_commander?
 "Houston, we have a problem"

 else
 "success"
 end
}

missions.map(&mission_result)
["success", "success", "Houston, we have a problem", ...]

Lambdas can be passed as blocks with the & operator

More about & later...

Currying
curried_add =
 ->(x){
 ->(y){
 ->(z){ x + y + z}
 }
 }

curried_add.(2) #<Proc:0x0000125...>
curried_add.(2).(3) #<Proc:0x0000126...>
curried_add.(2).(3).(4) # 9

curry creates a curried lamba
add = ->(x,y,z){x + y + z} #<Proc:0x0000123...>
add.(2,3,4) # 9

curried_add = add.curry #<Proc:0x0000124...>
curried_add.(2) #<Proc:0x0000125...>
curried_add.(2).(3) #<Proc:0x0000126...>
curried_add.(2).(3).(4) # 9

Lambdas can be partially applied
Kinda like dynamically setting default args

Useful if you need to pass extra args and do
"dependency injection"

(like config, or some other context)
add_two = curried_add.(2) #<Proc:0x0000127...>
add_two.(3) #<Proc:0x0000128...>
add_two.(3).(4) # 9
add_two.(3, 4) # 9

Lambdas can be partially applied
mission_result -> (flight_director, crew){
 if flight_director.is_ed_harris?
 "Failure is not an option"
 else
 successful_if_crew_does_ok(crew)
 end
}

but our report function doesn't know about flight directors...
def mission_report(mission, &result_lambda)
 "for #{mission.name}, the result was: #{result_lamba.call(mission.crew)}"
end

so we curry our lambda
mission_result_with_ed = mission_result.curry.call(ed_harris)
mission_report(apollo13, &mission_result_with_ed)
Failure is not an option

Lambdas can be composed with << and >>
add_two = ->(x) {x + 2}
times_three = ->(x) { x * 3}

(add_two << times_three).(4)
add_two.(times_three.(4))
(4 * 3) + 2 == 14

(add_two >> times_three).(4)
times_three.(add_two.(4))
(4 + 2) * 3 == 18

There are many ways to call a lambda
my_lambda.(foo)
my_lambda.call(foo)
my_lambda[foo]
my_lambda === foo # so you can use in case statements
my_lambda.yield(foo)

yield... That's interesting...

Remember blocks?
class Apollo13
 # ...
 def stir_oxygen_tanks?
 @oxygen_tanks.any?{|tank| yield tank}
 end
end

apollo13.stir_oxygen_tanks?{|tank|
 !tank.stirred_today?
}

Remember blocks?
Blocks are called with yield...
lambdas are called with yield

!

This gives us insight into how yield works

Remember blocks?
So these code snippets are equivalent

def stir_oxygen_tanks?
 @oxygen_tanks.any?{|tank| yield tank}
end

def stir_oxygen_tanks?(&should_stir)
 @oxygen_tanks.any?{|tank| should_stir.yield(tank) }
end

yield is not doing anything magic
Just calling the implicit block

What was that thing about the & operator before?

& converts an object into a block
...

What was that thing about the & operator before?

& converts an object into a block
Objects... like lambdas and procs

& converts an object into a block
Which is how we can pass a lambda as a block

missions = [apollo11, apollo12, apollo13, ...]

mission_result = ->(mission){
 if mission.tom_hanks_is_commander?
 "Houston, we have a problem"
 else
 "success"
 end
}

missions.map(&mission_result)
["success", "success", "Houston, we have a problem", ...]

& converts an object into a block
It works with other things too. Like symbols...

[1, -3, 2, -4].select(&:positive?)
[1,2]

Under the hood, it's just calling to_proc on the symbol

class Symbol
 def to_proc # simplified...
 ->(obj){ obj.send(self) }
 end
end

[1, -3, 2, -4].select(&:positive?)

is_pos = :positive?.to_proc
[1, -3, 2, -4].select(&is_pos) # [1, 2]

is_pos2 = ->(x){x.send(:positive?)
[1, -3, 2, -4].select(&is_pos2)

You can convert your code to lambdas too
Use & operator, and implement to_proc

class Adder
 def initialize(addend)
 @addend = addend
 end

 def to_proc
 ->(x){ x + @addend }
 end
end

add_two = Adder.new(2)
[2,5,1,7].map(&add_two)
[4, 5, 3, 9]

Functions love recursion
def factorial(n, acc=1)
 if n <= 1
 acc
 else
 factorial(n-1, n*acc)
 end
end

factorial(1) # 1
factorial(5) # 120

Functions love recursion
Ruby's stack doesn't love recursion though...
factorial(100000) # Oh oh...

!

stack level too deep (SystemStackError)
Traceback (most recent call last):
 10080: from factorial.rb:14:in `<main>'
 10079: from factorial.rb:5:in `factorial'
 10078: from factorial.rb:5:in `factorial'
 10077: from factorial.rb:5:in `factorial'
 10076: from factorial.rb:5:in `factorial'
 10075: from factorial.rb:5:in `factorial'
 10074: from factorial.rb:5:in `factorial'
 10073: from factorial.rb:5:in `factorial'
 ... 10068 levels...
 4: from factorial.rb:5:in `factorial'
 3: from factorial.rb:5:in `factorial'
 2: from factorial.rb:5:in `factorial'
 1: from factorial.rb:5:in `factorial'
factorial.rb:5:in `factorial': stack level too deep (SystemStackError)

Each function call goes on the stack
Too many, and you'll overflow it eventually

Luckily, we have a tail call optimisation
A function is "tail recursive" if the last thing a

function does is return a value and nothing else
afterwards

def factorial(n, acc=1)
 if n <= 1
 # last thing in this branch

✅

 acc
 else
 # last thing in this branch

✅

 factorial(n-1, n*acc)
 end
end

Enabling tail call optimisation
main.rb
RubyVM::InstructionSequence.compile_option = {
 tailcall_optimization: true,
 trace_instruction: false
}
require_relative 'factorial'

factorial(100000)
28242294079603478742934215...
Nice

!

What did all those cool tricks have in common?
The Three things

→ statelessness
→ immutability

→ functional purity
→ (And Tom Hanks trashing stuff)

Statelessness, immutability, and purity
If you take anything away from today:

Statelessness, immutability, and purity
If you take anything away from today:

90% of functional programming is about those three things

They let you make functions that fit in your brain

Thank you!
Cool Functional Tricks In Ruby

Julian Doherty
@madlep

juliandoherty.com

https://twitter.com/madlep
https://juliandoherty.com

