Cool Functional Tricks

In Ruby

Julian Doherty
@madlep
Jullandoherty.com



https://twitter.com/madlep
https://juliandoherty.com



https://envato.com/careers/

Who here has written code like this?

def calculate_damage(current_damage, new_damage)
current_damage + new_damage
end

calculate _damage(5123, 23145)
ft 28268



Or this?

movies = [
{movie: "Apollo 13", vyear: 1994, damage_cost: 2600000000},

{movie: "Cast Away", year: 2000, damage_cost: 60000000},

{movie: "Sully", year: 2016, damage cost: 101000000}
]

total _damage _cost = movies.map{i|movie]
movie[ :damage_cost]

}.sum()

# 2761000000



Or this?

movies = [
{movie: "Apollo 13", vyear: 1994, damage_cost: 2600000000},

{movie: "Cast Away", year: 2000, damage_cost: 60000000},

{movie: "Sully", year: 2016, damage cost: 101000000}
]

total _damage _cost = movies.reduce(0){|total, movie]
total + moviel:damage cost]
}

# 2761000000



Or even this?

movies = [
{movie: "Apollo 13", vyear: 1994, damage_cost: 2600000000},

{movie: "Cast Away", year: 2000, damage_cost: 60000000},

{movie: "Sully", year: 2016, damage cost: 101000000}
]

total _damage_cost = movies.sum{|movie| movie[ :damage cost]}
# 2761000000



What do we call this kind of code?



We call it...

Trashing a whole bunch
of stuff




Il
| ::ﬁﬁ:?

:,k.g___.__...___ " >
L | ¥

-

.»,—..
.....h.m... -addd



























Tom Driven Destruction



But let's not make the
problem worse




How do we minimise the damage?

Three Things

- Statelessness

- Immutability
- Functional Purity






Statelessness

Code that Is In i1t's own little world.
All It has, Is what Is given to It.
There is nothing outside. There is
no state




Don't do this &

class TomHanksDamage
attr_accessor :da_vinci_code, :damage

def calc_damage()
MovieModel.find _tom_hanks movies().each do |movie]
adamage = adamage + movie.damage_cost
@da_vincl code = true 1f movie.da _vinci?
end
end

def damage_cost()
1f @da_vincl_code
1 000_000_000_000
else
adamage
end
end
end



Do this &

damage _cost = MovieModel.find_tom_hanks_movies().then{|movies]|
if movies.find(&:da vinci?)
1 000 000 000 000
else
movies.sum(&:damage _cost)
end

}






E .
— "\ : —_
Li=mNip
:‘ LN ] ESS I .\. - ';/

e
| —

\ 1
=y

COM

GOOD

NEUTRAL

EVIL

1849 1936 1973 2012 2144 2321
SOUTH PACIFIC SCOTLAND SAN FRANCISCO ENGLAND NEO SOUL AFTER THE FALL




"An exploration of how ones soul’s sole actions of an
individual lives/souls impact one another in the
past, present and future...”



"An exploration of how ones soul’s sole actions of an
individual lives/souls impact one another in the
past, present and future...”

GOOD LUCK DEBUGGING THAT




Immutability

Only create data - Never change It.

R

:
T .
. \ N .
x4 \
’ s (a2
- - . g
d . .
» AN . ’ .
= - !
> . - -
- “ 3 L . \4
~ \ -
- v v ’7 “
A R
C . .
' 4 \{ } e W\ > ,/ o - N
5 N\ \/ N -
i S N » ,.
v: f L nd
- ~ N
b, S
“ . -
¢ .
J Gy -
. -
N y
.
o

.

2144
NEO SOUL




Don't do this &

class CloudAtlas::Soul
def initialize()
alives = []
end

def explore_soul(life)
alives << life
CloudAtlas.every single other_soul.each do |other|
other.impact_past _present_and_ future(self)
end
do_something philosophical with_all_that _mutable_state()
end
end

tom = CloudAtlas::Soul.new
tom.explore_soul("Dr Henry Goose")
tom.explore_soul("Isaac Sachs")

# this goes on for 172 minutes...



Do this &

class CloudAtlas: :Soul
def initialize(lives=[])
alives = lives
end

def explore_soul(life, others)
new _soul = CloudAtlas::Soul.new(@lives + [life])
new_others = others.map{i|other|

other.immutably_transform_past_present_and_future(new_soul)

}
exploration = new_soul.do_something philosophical(new_others)
[new_soul, new_others, exploration]

end

end



Do this &

initial _state = [
CloudAtlas: :Soul.new,
CloudAtlas.every single other_soul,

[ ]
]

["Dr Henry Goose", "Isaac Sachs"]
.reduce(initial state){|state, lifel
soul, others, explorations = state
new_soul, new_others, exploration = soul.explore_soul(life, others)
[new_soul, new_others, explorations + [exploration]]

}

# this still goes on for like 3 hours...






Functional Purity

There are no side causes
There are no side effects




Functional Purity

All you have are arguments you get given
All you can do Is compute something, and return It

If you call it again with the same arguments,
it must return the same result



Functional Purity

- No |O
- No random
- No current time
- No threads
- No state in other objects
- No Tom Hanks gifs






Don't do this

def gif my_tom(tom)
tom_gif = TomHanksMemeService.download a_tom _gif!(tom)
cache _image(tom_gif)
tom.1mage = tom_gif
tom.updated _at = Time.now
tom.save to the database!
end




Do this &

actually_thats_a_whole_separate_talk()

I've only got 30 minutes w

short: Google "Functional Core, Imperative Shell”
longer: grab me for &/W later

much longer:
"Monads are just monoilds 1n the category of endofunctors”



So?... What actually is functional programming?

- Statelessness
- Immutability
- Functional Purity



What actually is functional programming? TL;DR?

Expressing your logic like maths operations

Stop thinking of a list of Imperative instructions
Start thinking how you can transform your data



Don't think about how it needs to happen
Think about what needs to happen






Functions fit in our brains




Less to think about
Less to g0 wrong




The CPU couldn't care less

even If all your code was reams of global variables
and a mess of spaghetti goto statements




Our brains need simple structures

- We can create It
- We can reason about it
- We can test It
- We can maintain it
- We can change It



But Ruby is an 00
language though, right?

Everything is a function if
you squint hard enough




Plain Old (Immutable) Ruby Objects

class TomHanks
def initialize(movies
amovies = movles
adamage _cost = damage_cost
end

[], damage cost = 0)

def add movie_damage(movie, damage)
TomHanks.new(@movies + [movie], @damage_cost + damage)
end
end

tom = TomHanks.new()
destructive_tom = tom.add _movie_damage("Forest Gump", 50 _000_000)



Plain Old Ruby Objects

| thought you said state was bad, and we need to do
statelessness?



Plain Old Ruby Objects

| thought you said state was bad, and we need to do
statelessness?
Everything is a function if you squint hard enough




Everything is a function if you squint hard enough

self IS Just an implicit variable passed to a function.
't you treat It like that, it's ok.



What would Python do?

class TomHanks:
def __init__ (self, movies = [], damage _cost = 0):
self.movies = movies
self.damage cost = damage_cost

def add _movie_damage(self, movie, damage):
return TomHanks(self.movies + [movie], self.damage _cost + damage)

tom = TomHanks()
destructive_tom = tom.add movie_damage("Forest Gump", 50000000)

TomHanks.add _movie_damage(tom, "Forest Gump", 50000000)

also _destructive tom



What would Elixir do?

defmodule TomHanks do
defstruct [movies: [], damage_cost: 0]

def add movie damage(tom, movie, damage) do
%TomHanks{tom |
movies: [tom.movies | movie],
damage cost: tom.damage cost + damage
}
end
end

tom = %TomHanks{}
destructive_tom = TomHanks.add _movie_damage(tom, "Forest Gump", 50 _000_000)



We get something else for free with Ruby methods



Blocks

Let you pass an anonymous function to any Ruby method

class Apollol3
® ...
def stir_oxygen_tanks?
aoxygen_tanks.any?{|tank| yield tank}
end
end



Blocks let you choose different implementations

class Apollol3
...
def stir_oxygen_tanks?
aoxygen_tanks.any?{|tank| yield tank}
end
end

apollol3.stir_oxygen_tanks?{|tank]|
ltank.stirred today?

}

apollol3.stir_oxygen_tanks?{|tank]|
tank.pressure_sensor_malfunctioning?

}



Two ways to call blocks

apollol3.stir oxygen_ tanks?{|tank| tank.stirred today? }

apollol3.stir_oxygen_tanks? do |tank]
tank.stirred _today?
end



block syntax opinion

Use {} for when you care about the returned value
Use do ... end fOr side effects

Ignore line count



Controversial block syntax opinion

should_stir = apollol3.stir_oxygen_tanks?{|tank]|
tank.pressure_sensor_malfunctioning?

}

apollol3.stir_oxygen_tanks do |tank]|
1T tank.number ==
tank.explode!
tom.say "Houston, we have a problem”
end
end



Communicate intent with {} or do ... end
It's not about dogmatic whitespace rules



If you use Rubocop

#.rubocop.yml
Style/BlockDelimters:
EnforcedStyle: semantic



Object#then IS super cool

remove state from your context

put 1t In a block

damage_cost = MovieModel.find_tom_hanks _movies().then{|movies|
# I can see movlies here
do _stuff(movies)
do other stuff(movies)

}

# I can not see movies here

# statelessness 1s preserved



then is super cool

The implementation is trivial and elegant though

class Object
def yield_self

yield self
end

alias then yield_self
end



The thing is though...

Not as objects at least.
Syntax sugar for passing a bunch of code




What if we want to grab hold of a block?

class Apollol3
# ...
# prefix last argument with &
def stir_ oxygen_tanks?(&should stir)
# then you can use 1t like any other object
aoxygen_tanks.any?{|tank| should _stir.(tank)}
end
end



Now we have it, we can pass it around

class Apollol3
# ...
def stir oxygen_tanks?(&should stir)
# prefix 1t with & again to pass as a block
aoxygen_tanks.any?(&should _stir)
end
end




What is this captured block thing?

def do block(&block)
block.1nspect
end

do block { "I'm a @" }
# "#<Proc:0x00007f8e35173¢c00q(irb):35>"



A block you grab with s is a proc object



procs =~ lambdas (mostly...)

We'll use them interchangably in this talk
There are some subtle differences

We'll ignore that for today



Procs (and lambdas) are first class functions

"first class" just means something you can assign to
a value, and pass around like anything else




procs are first class anonymous functions

my_proc = proc{|x,y| x + y}
my _proc.(1,2)
H 3

my_lambda = lambda{lx,y| x + y}
my_lambda.(1,2)
f# 3

my_lambda = ->(x,y){x + vy}
my_ lambda.(1,2)
# 3



Lambdas can be passed as blocks with the s operator

missions = [apolloll, apollol2, apollol3, ...]

mission result = ->(mission){
1f mission.tom _hanks 1s commander?
"Houston, we have a problem"”

else
"success"”
end

}

missions.map(&mission_result)
["success", "success", "Houston, we have a problem", ...]



Lambdas can be passed as blocks with the s operator

More about s later...



Currying

curried add =

->(x)1{
->(y )1
->(z)1 x +y + z}
}
}
curried add.(2) #t<Proc:0x0000125...>
curried add.(2).(3) #t<Proc:0x0000126...>

curried add.(2).(3).(4) # 9



curry creates a curried lamba

add = ->(x,y,z){x + y + z} #<Proc:0x0000123...

add.(2,3,4) #t 9

curried _add = add.curry #<Proc:0x0000124...
curried add.(2) #t<Proc:0x0000125...
curried add.(2).(3) #t<Proc:0x0000126...

curried add.(2).(3).(4) # 9

V



Lambdas can be partially applied

dC
dC
dC

dC

OO O O O

Kinda like dynamically setting default args

Useful If you

two
two
two
two

C

need to pass extra args and do

S

vendency Injection”

(like config, or some other context)

= curried add.(2)

.(3)
(3).(4)
(3, 4)

#<Proc:0x0000127...>
#<Proc:0x0000128...>
# 9
# 9



Lambdas can be partially applied

mission_result -> (flight director, crew){
1f flight director.is_ed harris?
"Failure 1s not an option”
else
successful _if crew does ok(crew)
end

}

# but our report function doesn't know about flight directors...
def mission_report(mission, &result_lambda)
"for #{mission.name}, the result was: #{result lamba.call(mission.crew)}"

end

# so we curry our lambda

mission_result with _ed = mission_result.curry.call(ed_harris)
mission_report(apollol3, &mission result with_ed)

# Failure 1s not an option



Lambdas can be composed with << and >>

add two = ->(x) {x + 2}
times three = ->(x) { x » 3}

(add_two << times_three).(4)
# add_two.(times three.(4))
# (4 % 3) + 2 == 14

(add_two >> times_three).(4)
## times three.(add two.(4))
# (4 + 2) » 3 == 18



There are many ways to call a lambda

bda.(foo)

bda.call(foo)

bda[ fool

bda === foo # so you can use 1n case statements

bda.yield(foo)

| 3 3 3 3
<<
‘_I
Q)

| 3 3 3 3

yield... That's interesting...



Remember blocks?

class Apollol3
# ...
def stir_oxygen tanks?
aoxygen_tanks.any?{|tank| yield tank}
end
end

apollol3.stir_oxygen_tanks?{|tank]
ltank.stirred _today?

}



Remember blocks?

Blocks are called with yield...
lambdas are called with yield

o5
\l?/

This gives us insight into how yield works



Remember blocks?

So these code snippets are equivalent

def stir_ oxygen tanks?
aoxygen_tanks.any?{|tank| yield tank}
end

def stir oxygen_ tanks?(&should stir)
aoxygen_tanks.any?{|tank| should stir.yield(tank) }
end



yield is not doing anything magic

Just calling the implicit block



What was that thing about the s operator before?

& converts an object into a block



What was that thing about the s operator before?

& converts an object into a block

Objects... like lambdas and procs



& converts an object into a block

Which 1s how we can pass a lambda as a block

missions = [apolloll, apollol2, apollol3, ...]

mission result = ->(mission){
1f mission.tom _hanks 1s commander?
"Houston, we have a problem"
else
"success”
end

}

missions.map(&mission_result)
["success", "success", "Houston, we have a problem", ...]



& converts an object into a block

't works with other things too. Like symbols...

[1, -3, 2, -4].select(&:positive?)
# [1,2]



Under the hood, it's just calling to_proc on the symbol

class Symbol
def to _proc # simplified...
->(obj){ obj.send(self) }
end
end

[1, -3, 2, -4].select(&:positive?)

1S _pos = :positive?.to_proc
[1, -3, 2, -4].select(&1is _pos) # [1, 2]

is _pos2 = ->(x){x.send(:positive?)
[1, -3, 2, -4].select(&is_pos2)



You can convert your code to lambdas too

Use & operator, and implement to_proc

class Adder
def initialize(addend)

maddend = addend
end

def to_proc
->(x){ x + ®addend }
end
end

add _two = Adder.new(2)
[2,5,1,7].map(&add_two)
#t [4, 5, 3, 9]



Functions love recursion

def factorial(n, acc=1)

1f n <= 1
acc
else
factorial(n-1, n+acc)
end
end

factorial(1l) # 1
factorial(5) # 120



Functions love recursion

factorial(100000) # Oh oh... &
#t stack level too deep (SystemStackError)

Traceback (most recent call last):
10080: from factorial.rb:
10079: from factorial.rb:
10078: from factorial.rb:5:in "factorial'
10077: from factorial.rb:5:in “factorial'

14:in “<main>'
5.
5
5
10076: from factorial.rb:5:in “factorial'
5
5
5

:in “factorial'

10075: from factorial.rb:5:in "factorial'
10074: from factorial.rb:5:in “factorial'
10073: from factorial.rb:5:in factorial'
. 10068 levels...
4: from factorial.rb:
3: from factorial.rb:5:1in "factorial'
2: from factorial.rb:5:in “factorial'
1: from factorial.rb:5:in “factorial'
factorial.rb:5:in “factorial': stack level too deep (SystemStackError)

:in “factorial'

vl U1 Ol



Each function call goes on the stack

Too many, and you'll overflow 1t eventually



A func

‘1on 1s "tail rec

functior

def factorial(n,
if n <=1
# last thing
acc
else
# last thing

ursive" It t

does Is return a value a
afterwards

acc=1)

in this branch

in this branch 4

factorial(n-1, n=*acc)

end
end

ﬂ

A

Luckily, we have a tail call optimisation

e last thing a
d nothing else



Enabling tail call optimisation

# main.rb

RubyVM: :InstructionSequence.compile_option = {
tailcall _optimization: true,
trace instruction: false

}

require_relative 'factorial'

factorial(100000)
B 282422940796034/8/742934215. ..

# Nice &



What did all those cool tricks have in common?

- statelessness
- Immutability
- functional purity
-> (And Tom Hanks trashing stuff)



Statelessness, immutability, and purity

It you take anything away from today:



Statelessness, immutability, and purity

It you take anything away from today:

90% of functional programming is about those three things

They let you make functions that fit in your brain



AND THAT'S ALL | HAVE

TO SAY ABOUT THAL.




Thank you!

Cool Functional Tricks In Ruby

Jullan Doherty

@madlep
jullandoherty.com



https://twitter.com/madlep
https://juliandoherty.com

